Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Revista de Ciencias Sociales ; 29(1):357-368, 2023.
Article in English, Spanish | Scopus | ID: covidwho-2269770

ABSTRACT

Family support in the treatment of diabetes has a substantial impact on the benefit of the health and quality of life of the patient, in this sense the article aims to determine the relationship between family support and quality of life perceived by the patient with Diabetes Mellitus type 2, in times of Covid-19, from the Chicama-Peru Level-I Primary Care Center. The study used the hypothetical-deductive method, a quantitative approach, with a non-experimental, descriptive-correlational cross-sectional design. It included 106 patients diagnosed with Type 2 Diabetes Mellitus of both sexes from the Chronic Noncommunicable Disease program. Two questionnaires were applied, one on family support and the other on quality of life and its dimensions. The results allowed us to demonstrate that family support (59.76%), physical dimension (53.66%) and social dimension (52.44%) were regularly perceived;Likewise, it is evident that the quality of life (62.20%), satisfaction dimension (74.39%), impact dimension (52.44%) and concern dimension (46.34%) are classified as good. It is concluded that although the relationship between family support and quality of life perceived by the patient with diabetes mellitus-2 was low, the emotional and social dimensions were significantly related to quality of life © 2023, Revista de Ciencias Sociales.All Rights Reserved.

2.
5th International Conference on Inclusive Technologies and Education, CONTIE 2022 ; 2022.
Article in Spanish | Scopus | ID: covidwho-2223096

ABSTRACT

This research was focused on secondary school students due its importance on their growing processes from childhood to teens, on this stage the experiences lived build their character and personality. Therefore, it is needed to take care their issues and emotional needs generated by a pandemic context. Students results show several behaviors coming from anxiety and stress situations according to the results, the attitudes observed are socializing fear, anxiety and concern about spaces completely disinfected, isolation and lack of interest in attending face-to-face classes. © 2022 IEEE.

3.
Annals of Oncology ; 33:S1013-S1014, 2022.
Article in English | EMBASE | ID: covidwho-2041542

ABSTRACT

Background: RET fusions are found in 1-2% of patients (pts) with advanced non-small cell lung cancer (aNSCLC). Targeted therapy with RET inhibitors (RETi) significantly improved prognosis. Molecular mechanisms of resistance are still incompletely characterized. Methods: This multicentric retrospective study included 24 centres. Eligible pts had a RET+ aNSCLC, were treated with a RETi and had at least one molecular profile by next-generation sequencing (NGS), performed before and/or after RETi, on tissue and/or plasma samples. Primary resistance under RETi was defined as disease progression (PD) within 6 months of therapy. Results: 95 patients were included with 112 biopsies: 93 at baseline, 19 at PD. 17 patients had paired NGS (baseline and PD). Median age was 65 years (range 56-72);62% were female, 54% were never smokers, 17% had brain metastasis (BM) at diagnosis. 55 patients received pralsetinib, 36 selpercatinib, 4 other RETi. Overall, median PFS under RETi was 17.1 months (95%CI 12.6-28). Primary resistance to RETi occurred in 22 (23%) patients. Primary resistant versus durable responders to RETi had non-adenocarcinoma histology in 9% vs 46% (p=0.61), smoking history in 57% vs 40% (p=0.21), BM in 5% vs 21% (p=0.1), TP53 mutations in 37% vs 22% (p=0.23). KRAS G12V mutation and SMARCA4 alterations were found only in poor responders (4.5% vs 0%, p=0.2;and 25% vs 0%, p=0.04, respectively). Among biopsies at PD (N=19, 13 liquid and 6 tissue biopsies), 7/13 (54%) liquid biopsies failed due to insufficient ctDNA. In 12 evaluable pts, 3 (25%) acquired secondary RET mutations (2 G810S and 1 S904F), 3 (25%) had novel RET rearrangements (2 in intron 11, 1 RET-DOCK1, 1 RET-CSGALNACT2) and 3 (25%) pts had off-target alterations (2 MET and 1 MYC amplification). Three pts (25%) developed novel TP53 mutations, while 3 (25%) had no novel identifiable alterations at PD. Conclusions: SMARCA4 and KRAS co-mutations may have a role in primary resistance to RETi. Secondary RET mutations, novel RET rearrangements and MET/MYC amplifications were identified after treatment with RETi. More than half of pts had insufficient ctDNA at PD, making tissue biopsy essential to identify resistance mechanisms. Legal entity responsible for the study: Institut Gustave Roussy. Funding: Has not received any funding. Disclosure: V. Fallet: Financial Interests, Personal, Advisory Board: AstraZeneca, BMS, Takeda, Roche, Pfizer, Sanofi, Sandoz, Jansen;Financial Interests, Personal, Invited Speaker: AstraZeneca, BMS, Takeda, Pfizer, MSD;Financial Interests, Personal, Expert Testimony: GSK, Boehringer. C. Audigier-Valette: Financial Interests, Personal, Advisory Role: AbbVie, AstraZeneca, Boehringer Ingelheim, Bristol Myers Squibb, Ipsen, Eli Lilly, Novartis, Pfizer, and Roche. A. Russo: Financial Interests, Personal, Advisory Board: Pfizer, AstraZeneca, MSD, Novartis;Financial Interests, Personal, Writing Engagements: AstraZeneca, Novartis. A. Calles Blanco: Financial Interests, Personal, Advisory Board: AstraZeneca, Boehringer Ingelheim, Pfizer, Roche, Lilly, Merck Sharp & Dohme, Novartis, Bristol-Myers Squibb, Takeda, Sanofi;Financial Interests, Personal, Other, Speaker honoraria: Bayer;Financial Interests, Institutional, Research Grant, Drug-only for Investigator-initiated trial: Merck Sharp & Dohme. P. Iranzo Gomez: Financial Interests, Personal, Advisory Role: Bristol-Myers Squibb Recipient, F. Hoffmann, La Roche AG, Merck Sharp & Dohme, Boehringer Ingelheim, MSD Oncology, Rovi, Yowa Kirin, Grunenthal Pharma S.A., Pfizer. M. Tagliamento: Financial Interests, Personal, Other, medical writer: Novartis, Amgen;Financial Interests, Personal, Invited Speaker, travel/accommodation: Roche, Bristol-Myers Squibb, AstraZeneca, Takeda. L. Mezquita: Financial Interests, Personal, Advisory Board: Takeda, AstraZeneca, Roche;Financial Interests, Personal, Invited Speaker: Roche, BMS, AstraZeneca, Takeda;Financial Interests, Personal, Research Grant, SEOM Beca Retorno 2019: BI;Financial Interests, Personal, Research Grant, ESMO TR Research Fellowship 2019: BMS;Financial Interests, Institutional, Research Grant, COVID research Grant: Amgen;Financial Interests, Institutional, Invited Speaker: Inivata, Stilla. C. Lindsay: Financial Interests, Institutional, Principal Investigator: Roche, Amgen, BI;Financial Interests, Personal, Advisory Role: CBPartners, Amgen. S. Ponce: Financial Interests, Institutional, Principal Investigator: Merck Sharp and Dohme, F. Hoffmann-La Roche, Foundation Medicine, PharmaMar. Personal fees: Merck Sharp and Dohme, Bristol-Myers Squibb, F. Hoffmann-La Roche, Foundation Medicine, AstraZeneca, Boehringer Ingelheim, Eli Lilly, Pfizer, Amgen, Celgene.;Financial Interests, Personal, Advisory Board: Merck Sharp and Dohme, Bristol-Myers Squibb, F. Hoffmann-La Roche, Foundation Medicine, AstraZeneca, Boehringer Ingelheim, Eli Lilly, Pfizer, Amgen, Celgene.;Non-Financial Interests, Personal, Other: Merck Sharp and Dohme, Bristol-Myers Squibb, F. Hoffmann-La Roche. M. Aldea: Financial Interests, Personal, Invited Speaker, travel/accommodation: Sandoz. All other authors have declared no conflicts of interest.

4.
4th International Conference on Inclusive Technology and Education, CONTIE 2021 ; : 146-152, 2021.
Article in Spanish | Scopus | ID: covidwho-1769557

ABSTRACT

Along with the new challenges that universities must face, technology keeps advancing, seek to guarantee interaction with the rest of the world in real-time, encouraging the development of skills to produce, share and use knowledge. Public policies seek to fight against discrimination, not only limiting themselves to guaranteeing people's rights but also extending them towards decisions and social plans, with the aim of closing gaps and general well-being. © 2021 IEEE.

5.
Journal of Chemical Education ; 2021.
Article in English | Scopus | ID: covidwho-1454710

ABSTRACT

The COVID-19 pandemic disrupted chemistry teaching practices globally as many courses were forced online, necessitating adaptation to the digital platform. The biggest impact was to the practical component of the chemistry curriculum - the so-called wet lab. Naively, it would be thought that computer-based teaching laboratories would have little problem in making the move. However, this is not the case as there are many unrecognized differences between delivering computer-based teaching in-person and virtually: software issues, technology, and classroom management. Consequently, relatively few "hands-on"computational chemistry teaching laboratories are delivered online. In this paper, we describe these issues in more detail and how they can be addressed, drawing on our experience in delivering a third-year computational chemistry course as well as remote hands-on workshops for the Virtual Winter School on Computational Chemistry and the European BIG-MAP project. © 2021 American Chemical Society and Division of Chemical Education, Inc.

SELECTION OF CITATIONS
SEARCH DETAIL